Longitudinal to transverse drainage network evolution in the High Atlas (Morocco): The role of tectonics

Julien Babault,1 Jean Van Den Driessche,2 and Antonio Teixell1

Received 31 August 2011; revised 26 May 2012; accepted 1 June 2012; published 14 August 2012.

[1] The High Atlas of Morocco is a still-active, linear intracontinental mountain chain in the NW African plate, which results from weak crustal thickening associated with rift inversion during the Cenozoic and from uplift related to mantle thermal doming. A striking morphological feature of the High Atlas is the occurrence of both transverse and longitudinal (i.e., strike-parallel) drainage characterized by deep fluvial incision of more than 1000 m in low-relief topography of the axial zone of the chain. Most of the transverse component of the drainage appears to postdate the longitudinal component as indicated by recent or incipient captures and wind gaps. The longitudinal drainage is inherited from an early stage of fluvial organization controlled by the tectonic structures developed during upper crustal folding and thrusting in the post-Paleozoic cover. Amplification of N-S regional slope in the western High Atlas by continued crustal shortening and thickening triggered: (i) higher erosion rates in transverse than in longitudinal catchments and (ii) captures of longitudinal streams by transverse ones, creating a new organization of the drainage system toward the regional slope. Such evolution from a longitudinal to a transverse-dominated drainage may represent a common mechanism of fluvial network development in mountain belts where the amplification of the regional slope results from long-lived lithospheric convergence.

1. Introduction

[2] Rivers draining mountain belts follow paths influenced by both mean topographic gradient (or “regional slope”) and local surface roughness (or “local slope”). Both tectonics (uplift, crustal thickening, structural deformation) and erosion patterns influence regional and local slopes and drainage patterns can be expected to evolve over orogenic timescales. Incipient orogenic shortening in the upper crust is accommodated by gentle folding and thrusting. These induce local slopes, both parallel and opposite to the regional slope of the mountain belt, which eventually force streams to follow fold axes and thrust faults, i.e., perpendicular to the regional slope [e.g., Koons, 1995]. Ongoing crustal shortening and thickening will cause the amplification of the regional slope and the progressive tilt of the folds and faults developed in the upper crust, decreasing the downstream slopes parallel and opposite to the regional slope. Such evolution of regional and local slopes should favor the progressive capture by transverse streams (via headward erosion) of the longitudinal drains initially controlled by folds and thrust faults.

[3] Authors have long observed the occurrence of both longitudinal and transverse rivers in mountain belts [e.g., Biot, 1970; Bordet, 1955; Davis, 1889; Hovius, 1996; Koons, 1995; Lugeon, 1901; Oberlander, 1965, 1985; Ramsey et al., 2008; van der Beek et al., 2002]. While to Oberlander [1985] the transverse orientation of rivers appeared anomalous, Hovius [1996] remarked that many actively uplifting mountains around the world have simple drainage patterns transverse to their main structural trend. A simple explanation to these apparent contradictory views is that they concern orogens that differ in the amount of erosion they suffered, which can be directly related to the regional slope. Oberlander [1985] addressed the Zagros fold and thrust belt, with low shortening (20%) [McQuarrie, 2004] and regional slope (about 1°) [Oberlander, 1965], but relatively strong local slopes, whereas Hovius [1996] is concerned with orogens with much greater crustal shortening and exhumation, involving steeper regional slopes and only weak topographic expression of individual folds and thrusts (e.g., Himalaya, Andes, Southern Alps of New Zealand; etc.). Hence, the pattern in the Zagros can be taken as representative of an early stage of the mountain building process when compared for example to the Himalayas [e.g., Hatzfeld and Molinar, 2010].

[4] We test here the roles of regional and local slopes in controlling the drainage pattern of mountain belts by analyzing the evolution of the main rivers that drain the High
Atlas mountain belt of Morocco. Variations of structural relief (i.e., the uplift of rock units above their regional, undeformed elevation) and regional surface slope are observed along the strike of the High Atlas, which have favored the selective development of a transverse drainage at the expense of an early longitudinal drainage. Having escaped the effect of glacial erosion due to its low latitudinal position, this mountain belt is particularly appealing for the investigation of the relationships between fluvial drainage networks and tectonics.

2. Tectonics of the High Atlas

The ENE-trending High Atlas and the NE-trending Middle Atlas (Figure 1) are Cenozoic intracontinental thrust-fold belts composed at the surface essentially by Mesozoic rocks (mostly carbonate and shale), with sparse Paleozoic and Precambrian basement occurrences (slate, greywacke, rhyolite and granite). The internal structure of the High Atlas is relatively simple, consisting of doubly verging systems of folds and thrust faults, where most of the shortening is concentrated in the orogen margins [Teixell et al., 2003]. No internal crystalline zones developed; on the contrary, the inner parts of the mountain belt are often constituted by tabular sedimentary strata (dominantly Jurassic in age), disrupted by spaced thrusts and folds.

Figure 1. Sketch map showing the main tectonic and topographic features of Morocco. Barbed lines represent the boundaries of the deformed thrust-fold belts of the High Atlas, the Middle Atlas and the Rif. Light gray areas indicate the Cenozoic basins. Profile lines refer to Figure 3.
erosion rates. As a proxy to identify regions of probable high and low
vation) in a 5-km-moving window (Figure 3), and we used it
calculated the local relief (maximum minus minimum ele-
rate up to 1 mm/yr [Ayarza et al., 2005; Makris et al., 1985; Wigger et al., 1992]. The occurrence of Cenozoic alkaline magmatism and a geo-
physical modeling suggested that the elevation is partly
supported by an abnormally thin lithosphere [Missenard
et al., 2006; Teixell et al., 2003; Teixell et al., 2005; Zeyen
et al., 2005], probably as a result of deep thermal upwelling.

Based on syntectonic sediments, the age of crustal
shortening in the High Atlas is placed from mid Eocene to
Quaternary times [see a recent review in Tesón et al., 2010,
and references therein], while geomorphic evidence suggests
that much of the mantle-related surface uplift (~1000 m)
occurred in post-Miocene times [Babault et al., 2008].

3. Analysis of Topography and Sources of Uplift

We describe the topography of the Atlas mountains and
surroundings by their mean elevation at crustal and
lithospheric scale, calculated in moving windows of 30 or
100 km of diameter, respectively. The elevation data used
for the analysis is the SRTM90v4 DEM (A. Jarvis et al.,
2008, Hole-filled SRTM for the globe, version 4, available
at http://srtm.csi.cgiar.org). In temperate regions and under
slow to moderate erosion rates (~0.2 mm/yr), hillslope
erosion rates have been shown to be dependent on mean
basin slopes and local relief [e.g., Montgomery and
Brandon, 2002; Ouimet et al., 2009]. Indeed, local relief
measured at 5 km scales is more a reflection of channel
steepness than hillslope gradient and correlates with erosion
rate up to 1 mm/yr [DiBiase et al., 2010]. Accordingly, we
calculated the local relief (maximum minus minimum ele-
vation) in a 5-km-moving window (Figure 3), and we used it
as a proxy to identify regions of probable high and low
erosion rates.

The High Atlas of Morocco is 700 km long and 50 to
120 km wide. In 26% of the chain the mean elevation at
30 km scale is higher than 2000 m asl (Figure 2a). This high
land is ~440 km long and ~20 km wide in the western part
of the High Atlas (SW of Marrakech) and up to ~70 km wide
around Imilchil, at 6°W (Figures 2a and 3, profiles 2 and 4).
Only 2.6% of the Moroccan High Atlas is at a mean eleva-
tion that exceeds 2600 m.

The foreland basins flanking the High Atlas lie at low
elevation in the west (~500 m, Haouz, Souss and Tadla
basins, Figures 1 and 2a), whereas in the south-central part
and the east they correspond to plateaux at 1200–1400 m asl
(Ouarzazate, Moulouya and Hamada du Guir, Figures 1 and
2a). These elevated plains have not been shortened during
the Cenozoic. The mean elevation at 100 km scale shows a
400-km-long swell higher than 1500 m asl and reaching
values above ~2100 m asl that extends from the Anti-Atlas
to the Middle Atlas. These high elevations are slightly
oblique to the mean tectonic trend of the High Atlas
(Figure 2b).

The highest values of mean elevation at 30 km scale
coincide with the areas affected by crustal shortening during
the Cenozoic (Figures 2a and 3). In the absence of system-
atic estimates of the depth to the Mohorovicic discontinuity,
the negative Bouguer gravity anomaly in these areas reveals
that shortening is accommodated at depth by crustal thick-
ening (Figures 2a and 3).

The superposition of the mean elevation contour lines
at 100 km scale fit well the NE-trending asthenospheric
doming (Figures 2b and 3). Mantle-related surface uplift has
affected the High and Middle Atlas deformed belts, and is
responsible for the high elevation above 1200 m a.s.l. of the
Anti-Atlas and the Ouarzazate and Moulouya basins as well
(Figure 2a). The crustal shortening [Teixell et al., 2003] and
lithospheric thinning [Fullea et al., 2007; Missenard,
2006; Teixell et al., 2005; Zeyen et al., 2005] explain well
the distribution of the mean elevation in the central and
eastern High Atlas. However, the western High Atlas and the
low-elevation Haouz and Souss foreland basins lie outside
the maximum lithospheric thinning [Missenard et al., 2006].
Therefore, much of the high mean elevations in the western
High Atlas must be sustained by crustal thickening.

4. Analysis of the Drainage Pattern

4.1. Drainage Network Organization

The northern flank of the High Atlas is drained to
the Atlantic by the Tensift and the Ouem Er Rbia rivers in
the west, and to the Mediterranean by the Moulouya river
in the east (Figure 1). Along the southern flank, the main
rivers from west to east are the Souss, the Draa and the Ziz
(Figure 1). The Ziz river ends in the Sahara desert while the
outlets of the Souss and the Draa rivers reach the Atlantic
(although the Draa river is actually not perennial and water
often evaporates or infiltrates before reaching the ocean).

Along much of the northern flank from 5°W to
8°30′W and along the southern flank from 5°W to 6°30′W,
trunk streams are dominated by reaches parallel to the trend
of the chain (Figure 4a), termed here “longitudinal” reaches.
They are between 30 km to more than 150 km. On the northern flank of the western
High Atlas, longitudinal reaches are principally located in
the highest part of the chain (Nfiss, Ourika and Zate rivers,
Figure 4a) and they flow to the ENE. A marked change
occurs east of 7°W (Figure 4a); the longitudinal reaches of the Tessaout, Guemez and Melloul rivers, localized also in
the interior of the chain, flow to the WNW, opposite to the
flow of the Nfiss, Ourika and Zate longitudinal reaches. The
Abid river, a tributary of the Melloul, has also a large lon-
gitudinal reach that in this case appears localized close to
the mountain front.

On the southern flank of the High Atlas, from the
western termination of the chain to the longitude of Ouar-
zazate, most rivers are transverse (Figure 4a). Although drainage is mainly transverse north of the Ouarzazate basin,
the course of the main rivers, i.e., the Dadès and the upper
reaches of the Mguni river, are almost parallel or slightly
oblique to the trend of the orogen (Figure 4a). Some rivers of
the smaller catchments localized north of Ouarzazate are
also characterized by longitudinal reaches (Figure 4a). The Ziz river and its main tributaries (Figure 4a) are also characterized by long reaches parallel to the trend of the chain.

4.2. Relationship Between Drainage Pattern, Structure, Lithology, and Regional Slope Values

[17] In the central and eastern High Atlas, the previously described longitudinal reaches are all parallel to the structural grain, as defined by map-scale folds and thrust fronts (Figure 4b). Most of the transverse reaches connecting the longitudinal streams correspond to fold terminations or transfer faults. In Figures 5a and 5b, we project the main rivers on 3-D diagrams constructed with geologic cross-sections of the High Atlas and the shaded topography. These diagrams illustrate that in most of the High Atlas, longitudinal rivers flow along the axis of large synclines of the folded and faulted Mesozoic cover. There are strong contrasts of erodability; the most resistant layers generally form the crest of the narrow anticlines, while wide synclines are frequently occupied by weak shale formations.
In the western High Atlas (Toubkal Massif), the Ourika and Zate rivers follow the structural grain of the chain in the axial zone in spite of being made of Precambrian to Paleozoic magmatic and metamorphic rocks. The longitudinal segment of the Ourika river coincides with the trace of a main fault parallel to the general trend of the chain, suggesting a structural control of the river orientation. Similarly, it is plausible that the longitudinal reaches of the Ourika and Zate rivers formed originally in synclines of a now eroded Mesozoic cover. More to the west, the Nfiss river flows parallel to the trend of the chain in granitic basement and in a syncline of Triassic sedimentary rocks. These Triassic rocks are the remnants of an inverted graben now preserved only in the lower part of the longitudinal reach of the Nfiss river (Figure 5b). This suggests that sediments covered the western High Atlas and that their folding controlled the development of a longitudinal drainage in same way as it does to the east where the folded and faulted sedimentary cover is preserved.

Where the main rivers cut through the outer parts of the western High Atlas, they follow the regional slope across structures. This is the case for the transverse reaches of the Ourika and Zate rivers in the northern flank of the chain. Regional slope values were calculated using the grid of mean elevation at 30 km scale. The correlation between slope angles and the drainage network is shown in Figure 4c; this map shows that rivers are transverse at least in 4 specific areas where the regional slope value is greater than 3°. By contrast, longitudinal rivers flow where the regional slope is less than 2.5°.

4.3. Azimuth Distribution of Main Rivers Versus Regional Slope Direction Distribution

In order to evaluate to what degree rivers follow the regional slope, we plotted the azimuth of flow for each main river (and for each set of neighboring rivers with a similar planform geometry) and the regional slope in polar diagrams.
Figure 4. (a) Shaded relief map of the High Atlas region including the projection of the principal rivers and the trace of the main divide. (b) Tectonic sketch map representing the main folds and thrust fronts. (c) Map of the drainage network superimposed to the regional slope, calculated using the grid of mean elevation at 30 km scale. Contours indicate the mean elevation calculated in a 30 km moving window.
River flow azimuths were extracted using the D8 flow routing [O’Callaghan and Mark, 1984] in RiverTools (L. L. C. Rivix, Rivertools 3.0, 2003, available at http://www.rivertools.com), and each pixel (90 m x 90 m) of the main river paths has been sampled (“n” in Figure 6 is the number of sampled pixels). Because DEM grids are usually north-south, east-west oriented rectangles, D8 flow routing only allows the computation of eight azimuths ranging from 0° to 315° and spaced by intervals of 45°. Circular mean directions [Fisher, 1993] have also been calculated (black dots in polar diagrams).

We computed the azimuth distribution of the main regional slope where those rivers flow by extracting the flow angles of the smoothed topography, i.e., the mean elevation at 30 km scale. Accordingly, we used the Mass Flux Method of RiverTools (L. L. C. Rivix, Rivertools 3.0, 2003, available at http://www.rivertools.com), because the smoothed topography, which has a dome-like shape, is convex up. We sampled the azimuths of the smoothed topography along the main river paths. The continuous flow angle of the regional steepest slope directions have been binned at intervals of 15° following Fisher [1993], starting at −7.5° and ending at 352.5° (gray histograms in Figure 6). The circular mean direction has also been calculated for each sample (gray dots in polar diagrams). The resulting composite diagrams of Figure 6 allow determining three types of catchments in the High Atlas with regard to the percentage of reaches (of pixel size) of the main rivers that flow in the regional slope: longitudinal-dominated, transverse-dominated and mixed.

[21] Within a given catchment, the proportion of streams that flow in the main regional slope direction may vary from 11% to 58%. In the sub-catchments in white in Figure 6, the proportion of river reaches that flow parallel to the regional slope is high (40%, 41%, 47% and 58%, for Tensift west, Ouarzazate west, Tensift Ighayene-Rdat, and mixed.]
Figure 6

% of reaches that flow in the regional slope
- Longitudinal-dominated
- Mixed catchments
- Transverse-dominated
- Azimuth of reaches (pixels)
- Azimuth of regional slopes
- Mean rivers flow
- Mean regional slope
- Tectonic trend and deviation

Marrakech
31°N
0 25 50 75 100 km

Tensift west
1272
40%

Tensift Nfiss Ourika Zate
2455
26%

Tensift Ighityayene Rdat
903
28%

Oum Er Rbia
6969
11%

Moulaya trib
460
13%

Beni Mellal
47%

Ouarzazate West
1344
41%

Mgoun
727
28%

Dades and Ziz west
2354
19%

Ziz
2738
16%

Figure 6
and Souss subcatchments, respectively). These catchments are mainly characterized by transverse streams. By contrast, in the sub-catchments in dark gray in Figure 6, the proportion of reaches that follow the regional slope is low (11%, 13%, 16% and 19%, for Dadès and Ziz west, Ziz, Oum Er Rbia, and Moulouya tributary sub-catchments, respectively). We classify these catchments as longitudinal-dominated. The difference between the mean river flow direction and the mean regional slope in these is at least 45°.

In the sub-catchments in light gray in Figure 6, the proportion of reaches that follow the regional slope is between 26% and 28% (Tensift-Nfiss-Outika-Zate, and Mgoun sub-catchments). Longitudinal and transverse reaches develop respectively in the upstream and downstream parts of these mixed catchments.

For each subcatchment, the polar diagrams of Figure 6 report the main trend of the tectonic structures (faults and folds), and the deviation from the main tectonic trend of the High Atlas. The orientation of the structures is almost everywhere perpendicular to the main regional slope, and the longitudinal-dominated catchments have a high percentage of reaches (of pixels) that flow subparallel to the main folds and faults.

In summary, most of the catchments of the central and eastern High Atlas are longitudinal-dominated, whereas transverse-dominated catchments prevail in the western High Atlas south of Marrakech, with mixed catchments to a lesser extent.

5. Drainage Reorganization

The western High Atlas shows impressive jagged relief where the drainage is transverse, with steep slopes and a mean local relief at 5 km scale of more than 1100 m (profiles 1 and 2, Figure 3). Hillslope processes are dominated by landslides (shallow and deep) and rockfalls (e.g., in the southern flank in Figure 7a). On the other hand, the central and eastern High Atlas has a mean local relief of 900 m, and of only 600 m at profiles 4 and 5 (Figure 3). The landscape of the latter is smooth with a few canyons (e.g., Melloul river, 30 km west of profile 4, and Dadès, Todhra and Ziz rivers at the southern flank).

In spite of the jagged relief that characterizes the western High Atlas in general, the longitudinal reaches close to the headwaters of the Nfiss, Ourika and Zate rivers exhibit a remarkably smooth landscape. In these upstream reaches, local relief ranges from 100 to 600 m (Figures 7b and 8). The low-relief, upstream reaches of the longitudinal catchments are surrounded by local slopes of more than 30° in the high-relief, transverse catchments. Landslides in the upstream areas of the transverse valleys cut the smooth topographies producing a retreat of the divide and reducing the width of the longitudinal catchments in both flanks (Figures 7 and 8). The longitudinal drainage basins of the Nfiss, Ourika and Zate rivers become narrower in their upstream reaches (to the west) and beyond the western divide of the Nfiss and Ourika catchments streams are transverse.

The presence of a longitudinal catchment along the main divide area and of transverse catchments on each side causes the occurrence of triple-junctions of divides (Figure 7b and 8). In those places the remnants of longitudinal streams are preserved as wind gaps indicating they previously extended upstream before having been captured. Such wind gaps are very common along the divides bordering the longitudinal rivers. They are characterized by strong slope asymmetry, the lower slope being always directed toward the longitudinal catchment, and the greater slope toward the transverse one. This indicates that the upstream parts of the tributaries of the main longitudinal trunks have also been captured by the transverse catchments (Figures 7a, 9a, and 9b). Ongoing captures of the narrow, low-relief, longitudinal upstream reaches will lead to the disappearance of the old divides and the creation of a new main divide separating transverse catchments.

Applying this scheme to the parts of the main divide that separate transverse catchments, it follows that originally a longitudinal catchment was probably separating the northern and southern flanks of the mountain chain.

From this drainage evolutionary pattern we infer a shift toward the center of the High Atlas of ~10–15 km of the divides that lie between the transverse rivers of both flanks and the Nfiss axial longitudinal catchment (Figure 7b). Values of divide shifts are lower (~7–8 km) in the upper Ourika river and in the upper Zate river (<3 km) (Figure 8).

6. Discussion

6.1. Mechanisms Causing a Fluvial Drainage Reorganization in the High Atlas

Fluvial captures all over the western High Atlas indicate that the drainage network systematically evolves from longitudinal-dominated to transverse-dominated. In what follows we discuss potential mechanisms that may be causing this process of fluvial drainage reorganization at the scale of the mountain chain.

Differences in erodibility due to spatial variations in rock strength can explain differential erosion rates between catchments and local changes in drainage organization, as it happens in some areas of the Zagros fold and thrust belt [Oberlander, 1985] though not everywhere [Ramsey et al., 2008]. However, the upper reaches of the longitudinal Nfiss and transverse Berrenil rivers of the High Atlas (Figure 7a) are both located within a granitic massif without lithological changes (Tichka granite), indicating that rock strength is not influencing the process of divide retreat and capture. Diverse lithologies compose the western High Atlas, the main being Precambrian rhyolite and granite, and Paleozoic slate, greywacke and granite. Major variations of lithology are perpendicular to the main trend of the chain. However, we systematically observe captures of longitudinal...
reaches by transverse streams over ~200 km of the higher part of the western High Atlas, which indicates that lithology is not the dominant control on drainage reorganization in the western High Atlas.

[33] Erosion is proportional to water flux, and earlier studies proposed that precipitation gradients perpendicular to an orogen may lead to the migration of the main divide toward the drier flank [e.g., Bonnet, 2009; Willett, 1999]. The only gradients of precipitation that occur in the western High Atlas at the scale of the orogen are from east to west, due to the westerlies that supply moisture laterally from the Atlantic Ocean, and from the lowlands to the uplands, i.e., orographic rainfall enhancement [MADRPM, 2000]. On the assumption that these modern patterns of moisture and precipitation held in the recent past, and since captures occur on both flanks, the systematic drainage network evolution from longitudinal-dominated to transverse-dominated is not controlled by asymmetric precipitation.

[34] In mountain belts in the northern hemisphere, glacial headwall retreat of the glaciated north-facing sides of valleys during the Pleistocene have induced a migration of east-west trending ridgelines toward the unglaciated, south-facing side [e.g., Naylor and Gabet, 2007]. However, glacial erosion in the Toubkal massif could not explain the observed captures facing south. Moreover, the equilibrium line altitude (ELA) in the coldest stages of the Pleistocene was at 3300 m asl [Dresch, 1941; see also references in Hughes et al., 2011, 2006], leaving only 0.6% of the High Atlas above the ELA and hence under glacial conditions for erosion. Consequently, drainage reorganization cannot either be a consequence of glacial erosion in the High Atlas, which is dominated by fluvial erosion.

[35] The position of the longitudinal network correlates with the structural grain of the Mesozoic cover in the central and eastern High Atlas (Figures 4b, 5, and 6) with longitudinal reaches that are mainly confined in wide synclines or in front of anticline-related thrusts. In these segments of the chain the regional slope is low, mostly below 2.5° (Figure 4c). In contrast, transverse-dominated rivers spatially correlate with regional slopes ranging from 3° to 5° (Figure 4c), with high
local valley slopes (high local relief at 5 km scale, Figure 3), and with very active hillslope erosion evidenced by landslides (Figure 7), suggesting a threshold for aggressive headward migration and drainage capture by transverse systems. Greater erosion during the Cenozoic in the western High Atlas is also evidenced by Miocene apatite fission track ages with respect to preorogenic Cretaceous and older ages in the central and eastern High Atlas [Balestrieri et al., 2009; Barbero et al., 2007; Missenard et al., 2008]. Hence, the western High Atlas can be seen as an equivalent of the eastern High Atlas but with more structural relief of basement units, greater regional slope, and deeper exhumation that has largely removed the Mesozoic cover, all these specific features resulting from more rock uplift. We conclude that the mean regional slope is left as the main factor that can explain the drainage reorganization from longitudinal to transverse-dominated rivers in the High Atlas mountains.

6.2. A Model for Landscape Evolution in the High Atlas Inversion Orogen

The study of the Atlas system shows that the drainage network in an intracontinental mountain belt resulting from the inversion of a rift may experience an evolutionary trend from longitudinal to transverse. In the early stages of inversion, shortening produced folds and thrusts in the sedimentary cover more or less decoupled from basement which kept a low and homogeneous structural elevation. The previously stretched nature of the crust prevented its rapid overthickening and the establishment of high mean elevations and regional slopes. Under these circumstances, local structures produced sufficient local relief to deflect the rivers and make them flow parallel to the structural grain (Figure 10a). Ongoing shortening increased crustal thickening to exceed values acquired during the rifting phase. Flexural isostatic response to thickening increased the mean elevation of the orogen and the regional slopes on both flanks. Consequently, increased potential energy on both sides of the deformed belt enhanced fluvial erosion in short transverse rivers. Progressively, the differential erosion rates between the longitudinal rivers in the center of the chain and the transverse rivers made the latter capture longitudinal reaches and at the same time increase their contributing area. Ongoing thickening and drainage reorganization continuously reinforced transverse rivers’ capacity of erosion by increasing slopes and drainage areas. This process should eventually lead to the complete destruction of the early longitudinal drainage (Figure 10b). Hence, the incision rates in the main rivers ultimately control drainage longitudinal reaches and at the same time increase their contributing area. Ongoing thickening and drainage reorganization continuously reinforced transverse rivers’ capacity of erosion by increasing slopes and drainage areas. This process should eventually lead to the complete destruction of the early longitudinal drainage (Figure 10b). Hence, the incision rates in the main rivers ultimately control drainage longitudinal reaches and at the same time increase their contributing area. Ongoing thickening and drainage reorganization continuously reinforced transverse rivers’ capacity of erosion by increasing slopes and drainage areas. This process should eventually lead to the complete destruction of the early longitudinal drainage (Figure 10b). Hence, the incision rates in the main rivers ultimately control drainage longitudinal reaches and at the same time increase their contributing area. Ongoing thickening and drainage reorganization continuously reinforced transverse rivers’ capacity of erosion by increasing slopes and drainage areas. This process should eventually lead to the complete destruction of the early longitudinal drainage (Figure 10b). Hence, the incision rates in the main rivers ultimately control drainage longitudinal reaches and at the same time increase their contributing area.
Figure 9. (a and b) Field images and (c) shaded relief view of the piracy of a longitudinal tributary of the Zate river by the Rdat (transverse) river near the Tichka pass (western High Atlas). Color in Figure 9c indicates the local slopes as in Figure 8.
transverse whatever the climatic conditions [Hovius, 1996]. The evolution from longitudinal to a transverse drainage can be considered as a transient stage of drainage evolution during mountain building.

7. Conclusion

[39] While the eastern and central High Atlas, with lower elevation and regional slopes, are dominated by longitudinal (i.e., strike-parallel) drainage, fluvial captures all over the western High Atlas of Morocco indicate that the drainage network systematically evolves from longitudinal-dominated to transverse-dominated. Lithology and climate are not the dominant control on drainage reorganization in the High Atlas, leaving the mean regional slope as the dominant factor. [40] We propose that increased tectonic thickening and surface uplift enhanced potential energy on both sides of the deformed western High Atlas and enhanced the fluvial

Figure 10. Block diagrams illustrating two stages of fluvial drainage versus tectonic structure and regional slope in orogens formed by rift inversion. The evolution from longitudinal to transverse drainage is characteristic of the transient stage of drainage systems in growing mountain belts. Longitudinal streams are shown in blue, whereas transverse streams are indicated in red.
erosion in short transverse rivers. The differential erosion rates between the longitudinal rivers in the center of the chain and the transverse rivers in the margins made the latter capture longitudinal reaches and at the same time increase their contributing area. Ongoing thickening and drainage reorganization continuously reinforced transverse rivers capacity of erosion by increasing slopes and drainage areas. This process will inevitably lead to the complete destruction of the early longitudinal drainage in the western High Atlas and also in the eastern High Atlas if deformation and uplift continue at the present rates.

[41] Our study suggests that the evolution from a longitudinal to a transverse drainage in orogenic belts is a tran- sient stage of drainage evolution during mountain building.

[42] Acknowledgments. This work was supported by the Ministerio de Educación y Ciencia projects (CGL2006-07226 and CGL2010-15416), the Consolider Ingenio 2006 TOPOBERIA (CSD2006-00041), and the TOPOMED project (CGL2007-66431-CO2-01). We thank two anonymous reviewers, the associate editor and the editor, Onno Oncken, for their con- tribution to the improvement of the manuscript. We thank Alain Crave, Geoffrey Ruiz, and François Negro for help and discussion during field campaigns and Maria Luisa Arboleya for discussion and support.

References

Balestrieri, M. L., G. Moratti, G. Bigazzi, and A. Algouti (2009), Neogene

Hughes, P. D., J. C. Woodward, and P. L. Gibbard (2011), Quaternary gla-

Molnar, P. (1976), Mechanism of orogeny: A comparison of mountain building in compression and extension, Science, 192(4237), 68–73. 10.1126/science.192.4237.68

Muniz and colleagues (2008), Intra-plate tectonics controls on surface drainage evolution in western Mexico, Geomorphology, 97(1–2), 176–188. 10.1016/j.geomorph.2007.10.008

Oberlander, T. M. (1965), The Zagros Streams: A New Interpretation of Transverse Drainage in an Orogenic Zone, 168 pp., Syracuse Univ. Press, Syracuse, N.Y.

